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Chapter 1

Introduction

Reuse - the use of existing artifacts within the development of new ones, is common practice
in all engineering disciplines. Among its major benefits are higher productivity, thus lower
time to market, lower production costs, and increased products’ quality. In Software En-
gineering, the necessity of a mature approach to reuse has been first acknowledged openly
at the 1968 NATO Conference, in the context of the so called “software crisis”. Reuse has
been proposed as a potential solution for the problems underneath it. Ever since, the reuse
techniques in Software Engineering have evolved along with each newly emerged develop-
ment paradigm. This evolution has occurred both in terms of granularity and abstraction
level. Regarding granularity, things have advanced from code reuse in the form of pro-
cedures within the structured paradigm, to classes and objects within the object-oriented
one, reaching components and frameworks reuse with the advent of Component-Based Soft-
ware Development (CBSD). As to the abstraction level, there has been a major move from
code reuse (procedures, classes, objects, components) to reuse of higher level abstractions
such as object-oriented design patterns and architectures, ending with extensive reuse of en-
tire models and metamodels, as promoted by the latest Model-Driven Engineering (MDE)
approaches. The two previously-mentioned levels have also intermixed with a third one,
concerning the type of reuse techniques employed, such as instantiation, composition or
generative reuse.

Reuse, however, can only deliver its promises if provided with an appropriate formal foun-
dation. This should address both the issue of an adequate formal specification of reusable
artifacts and that of a formalized reuse process. Formal methods (covering languages, tech-
niques and tools based on mathematical knowledge, which enables formal reasoning) have
been proposed as a means of increasing software’s reliability. Reliability is to be broadly
understood as the absence of errors, including both correctness and robustness. In case of
reusable assets, that are to be employed in a variety of other contexts, reliability is a must.

Reuse being a subject so vast, there are various open issues in the field of formalizing reuse
and reusable assets. Within this thesis, we have approached four of its subdomains, concern-
ing object-oriented design and constraint patterns, (meta)modeling and software components.
In case of design patterns, the lack of formalism in specifying both their solutions and the
associated reuse process makes it impossible to check their consistency, the correctness of
their instantiations and limits their applicability to the development of critical systems. The
OCL-based solutions currently provided for some of the object-oriented constraint patterns
are inappropriate with respect to the role of assertions within an MDE development pro-
cess (which is mainly that of supporting correctness checks of models and applications).
In addition, the (meta)modeling languages employed by the MDE approaches have various
drawbacks in their static semantics’ specification, with a negative effect on model compil-
ability checks. Two of the current problems in component-based software development are

1



Chapter 1. Introduction 2

related to the existing gap between industrial component models (centered on implemen-
tation) and academic ones (focused on specification), as well as to the lack of component
models allowing a full contractual specification of software components. Based on this state
of facts, our general aim within this thesis has been that of recording a contribution to the
solutioning of each of the previously-mentioned open issues.

Thesis structure. The present thesis is structured in seven chapters (an introduction, a
background chapter, four chapters containing original contributions and a concluding one),
has a bibliography including a number of 141 references and three appendices.

Chapter 1 introduces the context, motivation and goals of the thesis, summarizes the
contributions brought within it and provides an outline of its contents.

Chapter 2 provides background information with respect to the formal approaches and
reuse areas addressed by the contributions in this thesis. Concerning the formal approaches,
we briefly overview the B formal method, the Design by Contract methodology and the OCL
language. In the field of reusable assets and reuse-oriented paradigms, we provide a short
introduction to object-oriented design patterns, Component-Based Software Development
and Model-Driven Engineering.

Chapter 3 describes the first contribution reported by this thesis, which fits in the area
of design pattern’s formalization. The contribution consists in a full formalization of the
GoF State design pattern in B. The presentation covers a short description of the pattern,
its formal definition in B, a formalization of its reuse process illustrated by means of an
example, as well as a detailed analysis of the proof activity performed with AtelierB.

Chapter 4 details our contribution with respect to the definition of constraint patterns
for object-oriented models. The presentation starts with a description of the constraint
patterns approached, together with their currently available solutions in the literature. Our
proposals consist in a number of OCL specification patterns provided as solutions for the For
All and Unique Identifier constraint patterns. A proof of concepts regarding the relevance
of our approach is given by means of two meaningful cases studies, using OCLE.

Chapter 5 illustrates our proposals concerning the formalization of the static semantics
of (meta)modeling languages. We start by emphasizing the compulsoriness of the model
compilability requirement in the context of MDE and diagnosing the current state of facts in
the field. Based on that, we argue on the need of a rigorous conceptual framework supporting
the specification of the static semantics of (meta)modeling languages and enabling efficient
model compilability checks. Further, we expose the principles that we see at the basis of such
a framework and we propose improvements to the static semantics of UML/MOF, Ecore and
XCore, in accordance to these principles.

Chapter 6 reports on our results in the field of software components’ specification. It
starts by introducing a contribution to a reverse engineering approach aimed at extracting
structural and behavioral abstractions from component system implementations. This con-
tribution has been established as part of an ECO-NET international project [1, 10]. The
presentation covers the project motivation, the general approach proposed, the core of our
contribution, as well as an overview of the provided tool-support and validation activity
performed. Further in this chapter, we present a contribution intended to set the bases of a
framework able to support an appropriate contractual specification of software components,
with a special emphasis on semantic contracts. First, we introduce ContractCML, a domain
specific modeling language ensuring the backbone of our proposal. The core contribution
concerns the method proposed for representing components’ semantic contracts within the
language metamodel. The use of the language is illustrated by means of a component mod-
eling example. Following, we describe a simulation approach regarding the execution of
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component services, which relies on the previously proposed method for representing se-
mantic contracts.

Each of the chapters 3 - 6 starts with a motivation for approaching the field in question,
includes an overview of related work and emphasizes the advantages of our proposals with
respect to it. In addition, each such chapter ends with a summary of contributions and
directions of future work on the topic.

Chapter 7 concludes our work and offers an overview of all contributions reported within
it.

Keywords. reuse, formal methods, design patterns, constraint patterns, metamodeling,
software components, MDE, WFR, CBSD, OCL, B



Chapter 2

Background

2.1 Formal Methods and Languages

2.1.1 Overview

In a broad sense, formal methods cover languages, techniques and tools based on mathemat-
ical modeling and formal logic, that are used throughout the specification, development and
verification of software systems. Within this section, we have defined the concept of formal
language and that of formal method, we have emphasized the value of formal methods in
the development of critical systems and we have discussed about their classification. Most
taxonomies distinguish among property-oriented and model-oriented formal methods.

2.1.2 The B Method

B [6] is a model-oriented formal method that supports the entire lifecycle of a software prod-
uct. The main structuring unit of B models is the abstract machine, the notation employed
by the method being called AMN (Abstract Machine Notation). System development in B
starts with the creation of a mathematical model driven by the user requirements, expressed
in terms of one or several abstract machines. This model is further refined or specialized,
until reaching a complete system implementation. Both the consistency of the initial model
and the correctness of all refinement steps are guaranteed by mathematical proofs. Among
the most powerful B prover tools is AtelierB [32].

Within this section, we have described the AMN notation, together with the mechanisms
ensuring incremental model development and refinement.

2.1.3 Design by Contract

Design by Contract (DBC ) [54] is a methodology proposing a contractual approach to the
development of object-oriented software, based on the use of assertions. The final aim is
that of increasing software’s reliability. Within this section, we have approached the main
assertion types (pre/post-conditions and invariants), we have provided a definition of class
correctness with respect to them and we have emphasized the purpose of writing assertions.

2.1.4 Object Constraint Language

OCL (Object Constraint Language [61, 87]) is a formal language used to define expressions on
UML (Unified Modeling Language [62, 63]) models. Within this section, we have approached
the OCL language features, OCL’s role in metamodeling and the OCL dialects (e.g. XOCL

4



Chapter 2. Background 5

[31]), as well as the OCL tool support. Regarding metamodeling, we have defined the
concepts of Well-Formedness Rule (WFR) and Additional Operation (AO); with respect
to tools, we have summarized the facilities offered by OCLE (OCL Environment [49]) in
specifying and evaluating assertions.

2.2 Software Reuse and Reusable Assets

2.2.1 Overview

Roughly speaking, reuse concerns the use of existing artifacts within the development of
new ones [48]. Within this section, we have provided definitions of the concepts reuse,
reusability and reusable artifact, we have argued on the advantages of adopting a reuse-
based development process and we have illustrated the evolution of Software Engineering
reuse techniques.

2.2.2 Object-Oriented Design Patterns

In software development, design patterns provide general recommended solutions to recur-
rent design problems. Within this section, we have addressed the roots and the evolution
of the pattern concept, we have introduced a granularity-based pattern taxonomy, and we
have discussed the pattern specification style adopted by the GoF catalog [43], underlining
its informal nature.

2.2.3 Component-Based Software Development

This section provides a short overview of the Component-Based Software Development
(CBSD [73]) paradigm. Within it, we have defined the concept of software component,
we have discussed about industrial (COM (Component Object Model [19]), .NET [88], Web
Services [55], CCM (CORBA Component Model [56]), JavaBeans [72], EJB (Enterprise Jav-
aBeans [35])) and academic (Fractal [21], SOFA (SOFtware Appliances [22]), KobrA [13],
Kmelia [9]) component models and we have addressed the component specification prob-
lem. With regard to the latter, we have summarized the UML Components methodology
introduced in [24].

2.2.4 Model-Driven Engineering

Within this section, we have offered a short introduction to the model-driven software de-
velopment paradigm. We have defined the basic concepts at its roots: model, metamodel,
meta-metamodel, Domain Specific Modeling Language (DSML). We have summarized its
different approaches: Model Driven Architecture (MDA [57]), Model-Driven Engineering
(MDE [16, 17, 70]) and Language-Driven Development (LDD, [31]). MDA is based exclu-
sively on OMG (Object Management Group) standards, its meta-metamodel being repre-
sented by MOF (Meta Object Facility [60]). MDE is the name used to refer the model-driven
approaches including formalisms and technologies which are independent of the OMG stan-
dards. The best known MDE framework is EMF (Eclipse Modeling Framework [36]); this
is based on the Ecore meta-metamodel and integrates powerful tools, among which MDT
OCL (Model Development Tools OCL [38]) and oAW (openArchitectureWare [5]). LDD is
based on the XCore meta-metamodel, this approach being implemented within the XMF
Mosaic tool [3].



Chapter 3

Formalization of Design Patterns

Object-oriented design patterns are nowadays acknowledged as one of the most popular ap-
proaches in the landscape of software engineering reuse techniques. This chapter summarizes
our work of investigating design patterns’ formalization in general, and their formalization
using the B formal method, in particular. The main contribution reported here concerns a
full formalization of the GoF State pattern in B. This has allowed us to explore the limits of
an existing approach regarding the reuse of patterns with the B method [45] and to propose
a potential improvement.

3.1 Motivation and Related Work
The research reported in this chapter is motivated by the informal nature of the original
description given to (GoF) design patterns. This lack of formalism is twofold: on the one
side, the pattern themselves are described using a mixture of natural language, UML/ OMT
diagrams and code samples, on the other, their reuse process is not formalized either. Both
facts have had a major contribution to the success design patterns enjoy of today. Namely,
the comprehensive, human-readable description of patterns ensures high understandability,
enabling a straightforward identification of the solutions that best fit a particular design
problem, while the unformalized reuse process provides a certain flexibility in adapting the
patterns to the specifics of a new application [18]. However, the lack of formalism makes
it impossible to check either the consistency of the patterns themselves or the correctness
of their instantiations, thus limiting their applicability to the development of safety critical
systems [52]. Moreover, the selection and reuse processes are hard to automate.

In this context, formalizing design patterns and their reuse has become a challenging
research issue. Several approaches have been proposed in this area. Among the most relevant
ones, we mention the creation of a specialized formal language called LePUS (Language
for Patterns Uniform Specification [39, 40]), a formalization approach based on the RSL
(RAISE Specification Language) language [23, 41], the formal specification of frameworks in
Catalysis [50], as well as a few formalization proposals with the aid of the B formal method
[18, 45, 51, 52].

3.2 An Approach to Formalizing the State Pattern in B
Our contribution to this field consists of a full formalization of the State design pattern
using the B method. This covers both the formal definition of the pattern itself and the
formalization of its associated reuse process.

6



Chapter 3. Formalization of Design Patterns 7

3.2.1 The State Design Pattern

Report on the paper

Formalizing the State Pattern in an UML-B Context
by Vladiela Petraşcu and Dragoş Petraşcu

The title promises the formalization of a widely used GoF design pattern, the state
pattern. In reality the paper presents only the formal description of a very special case of
the state pattern, and its reuse for a matching problem.

Figure 1 presents the UML class diagram of the state pattern. This diagram corresponds
to the diagram defining the state pattern of the cited book, except that exactly three states
are allowed here. In the book there is no restriction on the number of states. (The authors
of the paper admit this, when explaining the pattern.) The problem, however, that further
on they use the class diagram of Figure 1 as a reference to the state pattern, and so only
problems when exactly 3 states are used can be approached by they formalization. In the
conclusion it is mentioned as a main limitation. In fact, it is a very severe constraint.

Another problem with the state pattern used in Figure 1 is that in only allows one request
to be handled. In the cited book only one request is shown when the class diagram of the
state pattern is given, but there the problems are reduced to their simplest form in the
appropriate diagrams. The TCPConnection example described in the motivation section of
the state pattern (with methods open, close etc.), and also the second item of the applicability
section imply that in the general case a state pattern can handle several requests. In fact
the use of state pattern is really beneficial in those cases when the number of requests to
be handled is greater than one. This second problem is not event mentioned in the paper,
however, it is also a severe limitation.

Therefore the general form of the state pattern that should be considered in formalization
is shown in the next diagram. The number of states (n) and the number of requests (m) are
arbitrary.

Context

+ Request1()
...

+ Requestm()

State

+ Handle1()
...

+ Handlem()

- state

ConcState1

+ Handle1()
...

+ Handlem()

ConcStaten

+ Handle1()
...

+ Handlem()

. . .

From this diagram it is clear that the paper presents only a solution for the n = 3 and
m = 1 case, and there is nothing about the solution for the general case. In this respect
the paper fails to achieve the aim set by its title, abstract and introduction. Only the

1

Figure 3.1: State pattern’s structure

State [43] is a behavioral GoF pattern
that provides an answer to the problem
of designing a class (Context) whose ob-
jects have complex, state-dependent be-
havior. The solution’s structure is given
by the diagram in Figure 3.1. The core
idea is that of creating an abstract class
(State) to encapsulate state-specific behav-
ior, which is then implemented in each of
the concrete classes inheriting State. Each
Context instance holds a reference to its
current state and delegates to the latter’s
Handlei method (part of) each Requesti re-
ceived.

3.2.2 State Pattern Definition in B

The formal definition of the pattern has been manually created, starting from its informal
description, as provided by the GoF catalog and driven by a set of UML-to-B translation
rules available in the literature [71]. A core aspect here is related to the fact that the
polymorphic behavior and the delegation idea have not been formalized at this level, being
delayed to the first step of the reuse process (instantiation with renaming). This has allowed
us to avoid a severe limitation regarding the number of concrete states involved1. Experi-
mentation has shown that this delay proposal does not affect the number of proofs reused
while instantiating the pattern in B.

The outcome of this step is represented by the StatePattern abstract machine. The
resulting machine has been checked for correctness using the AtelierB tool [32]. All the
generated proofs have been automatically discharged, acknowledging its consistency.

3.2.3 State Pattern Reuse in B

The State pattern’s reuse process is illustrated by means of an average-complexity case
study, involving the B formal modeling of an LCD Wallet Travelling Clock [74, 82]. While
formalizing the reuse process, we have roughly followed the framework proposed in [45].
Consequently, the proposed formalization in achieved in two steps: an instantiation, followed
by an extension. The former is achieved by means of the B inclusion mechanism, while the
latter is accomplished using B refinement. Apart modularity, such a separation of concerns
has the advantage of producing the instantiation machine at zero proof cost.

Step 1 - Machine inclusion. This is an intermediate reuse step, the output of which
is represented by the RenamedStatePattern abstract machine. At this level, the pattern
has been specialized by means of appropriate renamings, information related to the concrete
states and new operations. This machine formalizes the polymorphic and delegation behav-
iors. Moreover, it is built so that to avoid the generation of additional (non-obvious) proof
obligations. Therefore, the proof of its consistency has been trivially achieved.

As we have shown, this first reuse step is entirely automatable, based on user-provided
information covering: name of the context-type class, number and names of concrete states,
initial state of a context-type object, number and names of requests, textual form of a

1This limitation concerns working with a predefined number of concrete states. It is one of the main
drawbacks of the Composite pattern formalization proposed in [45]
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state transition diagram involving all concrete states and requests, as well as names of new
operations to be added. Therefore, our delay proposal does not introduce extra manual
overhead when reusing the pattern.

Step 2 - Refinement. The outcome of this step is represented by the Clock refinement
machine, which entirely formalizes the LCD clock behavior under consideration.

An overview of all B components that make up the clock’s formal model and their
iterrelationships is given by the diagram in Figure 3.2.

Figure 3.2: Structure of the B model corresponding to the LCD clock

3.2.4 Validation. Proof Activity Analysis

The entire B development has been supported by the AtelierB prover tool. Table 3.1 gives
an overview of the proof activity performed.

Machine TC POG nPOs nAut nInt %Pr
StatePattern OK OK 7 7 0 100%
RenamedStatePattern OK OK 0 0 0 100%
ClockMemory OK OK 72 70 2 100%
ClockDisplay OK OK 29 29 0 100%
Clock OK OK 564 412 152 100%

Table 3.1: Overview of the proof activity

All machines have been successfully typechecked and all proof obligations (POs) have
been successfully generated, as shown by the second and third columns of the table. The
remaining columns indicate, from left to right, the number of non-obvious proof obligations
generated (nPOs), the amount of proofs discharged automatically (nAut) and interactively
(nInt) by the prover, as well as the proof success rate (%Pr).

Following, we have performed a detailed per-operation analysis of the proof obligations
corresponding to the StatePattern machine and Clock refinement. For each operation,
we have indicated the total number of POs generated, the number of such obligations per
category (invariant-preservation vs. precondition-fulfillment ones), as well as the amount
of proofs discharged interactively and automatically in each category. This analysis has
revealed that, from the 564 POs generated for Clock, only three are directly connected to
the instantiation of the pattern, all of them being automatically proved2. The remaining
561 proof are closely related to the specifics of the LCD case study. Although the number

2Taking into account also the facts that the StatePatternmachine has been proven entirely automatically
and that the RenamedStatePatternmachine does not generate any non-obvious obligation, it follows that all
the proof work concerning the definition and instantiation of the State pattern in B has been automatically
performed.
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of required interactive proofs seems high (152), the proof strategies that we have applied
in order to discharge them have been quite similar. Manual decisions, such as performing
proof by cases or by contradiction, instantiating universally quantified predicates, adding
hypotheses or applying modus ponens, have been needed in order to direct the proofs.

As argued by [18], one of the advantages of applying patterns with the B method resides
in the fact that not only the pattern definition itself is being reused, which leads to better
modularity and improved safety, but so are the formal proofs associated with it. In order to
assess the amount of proofs reused as a consequence of applying our proposal, we have defined
the ClockNoPattern machine, which models the same behavior as Clock, only without
explicitly using the State pattern. A comparative analysis of the associated proof activity
has allowed us to make an assessment with respect to the total number of proofs reused as
a result of applying the proposed formalization of the State pattern in a B project. The
number in question has been estimated to 4 + m ∗ n, where n stands for the number of
concrete states and m for the number of requests.

3.3 Summary
Within this chapter we have provided a full formalization of the State design pattern using
the B formal method. This covers:

• a definition of the State design pattern in B;
• a highly automatable formalization of its associated reuse process;
• an illustration of its reuse in B, through an average-complexity case study;
• a full correctness proof (using the AtelierB tool) of all B machines involved in the case

study, with a significant number of interactive proofs;
• a detailed analysis of the proof activity performed, ended with an assessment with

respect to the number of proofs that are saved with each reuse of the proposed pattern
formalization in a B project.

While formalizing the pattern’s reuse process, we have roughly followed the framework
proposed in [45]. However, as compared to the example presented there (a B formalization
of the Composite design pattern), our approach to formalizing the State pattern exhibits
the following advantages:

• it formalizes the delegation idea, that is the core behavior proposed by the pattern;
• it does not constrain in any way the number of concrete classes to which polymorphism

applies (the number of concrete states, in this case); this is due to our proposal of
delaying the formalization of the polymorphic behavior to the first step of the reuse
process.

Further work is mainly aimed at automating the proposed approach, as well as at investi-
gating our “delay” proposal and its believed advantages in relation to other design patterns.

This contribution has been published in [81]. It relies on previous experimentations with
respect to proving the consistency of object-oriented models using the B method, reported
in [82].



Chapter 4

Constraint Patterns in Object-Oriented
Modeling

In the previous chapter, we have discussed about object-oriented design patterns as reusable
assets and how to represent their solutions using the B formal method. Within this chap-
ter, the reusable entities approached are the constraint patterns from object-oriented class
modeling. The main contribution reported here consists in the proposal of a new approach
concerning the definition of these patterns, driven by the new requirements imposed by MDE
on the use of assertions.

4.1 Motivation
The emergence of MDE has imposed the necessity and laid the groundwork for automatic
correctness verifications of models and model-based generated applications. Such verifica-
tions rely on the use of model assertions. Assertions, such as pre/post-conditions and invari-
ants, are needed to compensate for the narrow expressivity power of diagrammatic modeling
languages. In traditional software development, which used to employ models primarily for
documentation purposes, correctness and clearness were the only quality attributes required
for assertions. In the context of MDE however, which strengthens the need for automatic
model correctness checks, assertions should be designed so as to provide efficient support for
error diagnosis.

The ever-growing use of assertions following the advent of MDE has led to the identifi-
cation of several constraint patters, while the necessity of spending less time and avoiding
syntax errors in their writing has motivated a few approaches aimed at formalizing and
automating the instantiation of these patterns. However, we argue that the constraint pat-
terns’ solutions currently available in the literature fail in providing the level of debugging
support requested for assertions in the context of MDE.

4.2 Related Work
The most relevant related work on constraint patterns, from which we have started and
which we have used as a comparison base for our proposals, is given by the approaches
presented in [7, 8] and [84–86].

10
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4.3 A New Approach: MDE-Driven OCL Specification
Patterns

The approach proposed within this chapter (to which we refer as being MDE-driven) builds
on two fundamental principles, namely:

1. In accordance with the model correctness-focused role of assertions within MDE, the
solutions of constraint patterns should be designed so as to encapsulate increased
debugging (error diagnosing) support;

2. In accordance with the ultimate purpose of models and model-level assertions in MDE
(translation into code), as well as with the principles of Design by Contract, the
solutions of constraint patterns should be given not only in terms of invariants (as
currently the case), but also in terms of matching preconditions.

4.3.1 Approached Patterns. Existing Solutions

Being a rather new research topic compared to their design counterparts, constraint patterns
do not currently benefit from a generally-agreed naming or definition in the literature1.
Therefore, we have proposed and relied on the following definitions within this chapter.

Definition 4.1. A constraint pattern embodies a recurrent logical restriction imposed on
class models, together with a recommended general specification for it.

Definition 4.2. An OCL specification pattern denotes the recommended OCL-based solu-
tion of a constraint pattern.

Our proposals are concerned with three constraint patterns previously identified in the
literature - Attribute Value Restriction, Unique Identifier, and For All.

Attribute Value Restriction [84] (referred as Invariant for Attribute Value in [8]) is an
atomic pattern used to abstract various constraints on the value of a given class attribute.
Its associated OCL specification pattern2, as provided in [84], is listed below.
pattern AttributeValueRestriction(property:Property, operator,value:OclExpression)=
self.property operator value

Unique Identifier [84] (referred as Semantic Key in [8]) captures the situation in which
an attribute (a group of attributes) of a class plays the role of an identifier for the class, i.e.
the class’ instances should differ in their value for that attribute (group). Following, there
are its corresponding OCL templates, as proposed in [84]
pattern UniqueIdentifier(property:Tuple(Property))=
self.allInstances()->isUnique(property)

and [7]
pattern SemanticKey(class:Class, property:Property)=
class.allInstances()->forAll(i1, i2 | i1 <> i2 implies i1.property <> i2.property).

Finally, the For All constraint pattern [84] requires every object of a certain collection to
fulfill a number of specified restrictions. Below, there is the OCL template-like description
of its associated specification pattern.
pattern ForAll(collection:OclExpression, properties:Set(OclExpression))=
collection->forAll(y | oclAND(properties, y))

1The phrases constraint patterns and OCL specification patterns are used interchangeably.
2All pattern solutions are given in terms of OCL parameterized templates, as described in [84].
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4.3.2 Proposed Solutions

4.3.2.1 The For All Constraint Pattern

Our approach is rooted in a pair of solutions that we have proposed for the For All constraint
pattern, whose corresponding OCL templates are provided below.
pattern ForAll_Reject(collection:OclExpression, properties:Set(OclExpression))=
collection->reject(y | oclAND(properties, y))->isEmpty()

pattern ForAll_Select(collection:OclExpression, properties:Set(OclExpression))=
collection->select(y | not oclAND(properties, y))->isEmpty()

There are two meta-constraints needed for the patterns above to generate syntactically
correct OCL specifications by instantiation, namely:
(FA1) collection should be a valid OCL expression which evaluates to a collection type;
(FA2) each of the properties should be a valid boolean OCL expression.

We have argued on the advantages of our new solutions over the existing one by means
of a relevant modeling example. Moreover, the semantical equivalence of our proposals with
the one in use has been confirmed by translation into a B abstract machine, whose proof
obligations have been discharged by AtelierB.

4.3.2.2 The Unique Identifier Constraint Pattern - Invariant Solutions

In case of the Unique Identifier constraint pattern, we have distinguished (for the first
time in the literature, to the best of our knowledge) among two possible contexts in which
such constraints can occur, providing appropriate invariant solutions for each case. The
first refers to the so-called “global” uniqueness - certain models or applications may require
all possible instances of a class to differ in their value for a particular attribute. The
second captures a “container-relative” uniqueness - a model/application constraint may state
that each instance of a class accessible starting from a given container should be uniquely
identifiable by the value of a particular attribute, among all instances of the same class
from within the same container. We have emphasized that, despite their frequent use for
situations matching the “container-relative” case, the existing solutions for Unique Identifier
correspond to the “global” case exclusively. Moreover, we have pointed to some drawbacks
of these solutions, concerning both one’s failure in obeying the semantics of invariants and
their lack of appropriate debugging support.

“Global” uniqueness case (GUID). For the “global” context, we have proposed the
following OCL specification pattern
pattern inv_GloballyUniqueIdentifier(class:Class,attribute:Property)=
class.allInstances()->select(i | i.attribute = self.attribute)->size() = 1,

meant to be instantiated as an invariant in the context of class. The necessary conditions
for ensuring syntactical correctness of the resulting OCL expression are thus the following:
(invGUID1) the pattern instantiation should be performed in the context of class ;
(invGUID2) attribute should be among the attributes of class.

“Container-relative” uniqueness case (CUID). In case of “container-relative” unique-
ness, the proposed solution is the one below.
pattern inv_ContainerRelativeUniqueIdentifier(container,contained:Class,

navigationToContained:Property, attribute:Property)=
let bag:Bag(OclAny) = self.navigationToContained.attribute in
ForAll_Reject(self.navigationToContained, Set{UniqueOccurrenceInBag(bag,attribute)})

Its corresponding meta constraints are as follows:
(invCUID1) the pattern instantiation should be performed as an invariant in the context of
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container ;
(invCUID2) navigationToContained should be a reference in container having the type con-
tained ;
(invCUID3) attribute should be an attribute of contained.

The OCL specification pattern above employs a newly-proposed constraint pattern -
Unique Occurrence in Bag (UOB), requiring that “A given class attribute has exactly one
occurrence in a given bag of elements of the same type”. For UOB, we have proposed the
following OCL specification pattern.
pattern UniqueOccurrenceInBag(bag:OclExpression, class:Class, attribute:Property)=
bag->count(self.attribute) = 1

Its associated meta-constraints state that:
(invUOB1) the pattern instantiation is supposed to be performed as an invariant in the
context of class ;
(invUOB2) attribute should be among the attributes of class ;
(invUOB3) bag should be a valid OCL expression that evaluates to a Bag type;
(invUOB4) attribute and the elements from bag should have the same type.

It is possible to generalize the inv_ContainerRelativeUniqueIdentifier pat-
tern, such that the uniqueness constraint, instead of applying to all contained elements,
would rather apply to a conveniently filtered subset. Below, we give the OCL pattern that
we have proposed in this respect.
pattern inv_GenContainerRelativeUniqueIdentifier(container,contained:Class, attribute:Property,

navigation:Feature, properties:Set(OclExpression)) =
let subset:Set(contained) = self.navigation->select(e | oclAND(properties,e)) in
let bag:Bag(OclAny) = subset.attribute in
ForAll_Reject(subset,Set{UniqueOccurrenceInBag(bag,attribute)})

The pattern instantiation is constrained by the following necessary conditions:
(invGCUID1) the instantiation should be performed as an invariant in the context of con-
tainer ;
(invGCUID2) navigation should be a feature of container having the type contained ;
(invGCUID3) attribute should be an attribute of contained ;
(invGCUID4) each expression from properties should stand for a valid OCL boolean expres-
sion.

4.3.2.3 The Unique Identifier Constraint Pattern - Pre/Post-condition Solu-
tions

Until now, the solutions provided in the literature for constraint patterns such as Unique
Identifier have only been stated in terms of class invariants. However, we have argued that,
in the context of MDE and in accordance to the principles of Design by Contract, these
solutions should be enhanced by the addition of appropriate OCL specification patterns for
the preconditions of operations that might break the constraints in question. Consequently,
we have provided such OCL specification patterns for the preconditions of model operations
that could violate an unique identification constraint, considering both the “global” and the
“container-relative” types of uniqueness contexts.

“Global” uniqueness case (GUID). For the “global” case, we have proposed the following
precondition specification pattern, to be instantiated in the context of class::setattrib-
ute(). The generated precondition preserves the uniqueness of attribute’s values among all
class instances.
pattern preSet_GloballyUniqueIdentifier(class:Class, attribute:Property, parameter:Parameter)=
ForAll_Reject(class.allInstances(), Set{AttributeValueRestriction(attribute,<>,parameter)})
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To ensure validity of the generated OCL expression, the following meta-constraints must
hold:
(preGUID1) the instantiation is performed in the context of class::setattribute;
(preGUID2) attribute is an attribute of class ;
(preGUID3) parameter is the only parameter of setattribute, having the same type as
attribute.

“Container-relative” uniqueness case (CUID). For this case, we have proposed the
following precondition patterns:
pattern preAdd_ContainerRelativeUniqueIdentifier(container,contained:Class,

navigationToContained:Property, attribute:Property, parameter:Parameter) =
ForAll_Reject(navigationToContained,

Set{AttributeValueRestriction(attribute,<>,parameter.attribute)})

pattern preSet_ContainerRelativeUniqueIdentifier(container,contained:Class,
navigationToContainer,navigationToContained:Property,
attribute:Property, parameter:Parameter) =

ForAll_Reject(navigationToContainer.navigationToContained,
Set{AttributeValueRestriction(attribute,<>,parameter)}).

The instantiation of the first pattern above generates a precondition for the addcontained()
operation of container, meant to preserve the uniqueness of attribute’s values among all in-
stances of contained from within container. These instances are accessible by means of the
navigationToContained reference of container. The following meta-constraints should be
fulfilled, so as to ensure the validity of the generated OCL expression.
(preAddCUID1) the pattern instantiation context is container::addcontained();
(preAddCUID2) navigationToContained is a reference in container of type contained ;
(preAddCUID3) attribute is an attribute of contained ;
(preAddCUID4) parameter is the only parameter of addcontained, having contained as type;

The second pattern may be instantiated to generate a precondition for the setattribute
operation of the contained class, with the purpose of preserving the same “container-relative”
uniqueness constraint. Following, there are the meta-constraints corresponding to its pa-
rameters.
(preSetCUID1) the pattern instantiation context is contained::setattribute();
(preSetCUID2) navigationToContained is a reference in container of type contained ;
(preSetCUID3) navigationToContainer is a reference in contained of type container, having
mandatory-one multiplicity;
(preSetCUID4) navigationToContained is the opposite of navigationToContainer ;
(preSetCUID5) attribute is an attribute of contained ;
(preSetCUID6) parameter is the only parameter of setattribute, having the same type as
attribute.

4.3.3 Tool Support and Validation

We have validated our approach and proved its relevance in establishing model correctness
by means of the OCLE tool. So as to emphasize its compulsoriness, model correctness has
been discussed by analogy to program correctness. From this perspective, establishing model
correctness involves both model compilability checks and model testing.

4.3.3.1 Model Compilability Checks

Model compilability assessments involve the evaluation of metamodel WFRs on the model in
question; failure to fulfill any of them indicates a bug in the model. Writing the WFRs with
model debugging support in mind (as promoted by our proposed specification patterns) con-
siderably facilitates this task, thus speeding up the development process. A proof of concepts
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has been provided, using a sample UML model for components and an UML 1.5 [58] WFR
concerning the uniqueness of names within namespaces. We have illustrated the advantages
of writing the WFR in question as an instantiation of the inv_GenContainerRelative-
UniqueIdentifier specification pattern, as opposed to expressing it as an instantiation
of ForAll, as originally specified in [58].

4.3.3.2 Model Testing

Model testing involves the evaluation of model-level invariants (business constraint rules or
BCRs) on snapshots (domain model instantiations). Assuming the model itself as correct,
the detection of any false-positive (wrong snapshot that is accepted, i.e. all BCRs evaluate
to true) or false-negative (good snapshot that is denied, i.e. fails to fulfill a particular BCR)
points to a logical bug in the BCR expressions. Designing them with debugging support
in mind may ease the task considerably3. Using a sample model, we have provided a proof
of concepts with respect to the advantages derived from applying the ForAll_Reject
pattern, instead of the classical ForAll, in writing a particular BCR.

4.4 Summary
We have hereby proposed a novel approach concerning the definition of constraint patterns
for object-oriented class models. This enhances the state of the art with the following:

• a proposal for a clarification of terminology, distinguishing among the concept of con-
straint pattern and that of OCL specification pattern;

• a pair of solutions for the For All constraint pattern (given as OCL specification
patterns) enabling efficient error diagnosis;

• an equivalence proof of the solutions provided for the For All pattern with the existing
one, conducted by means of the AtelierB prover;

• a new approach with respect to the definition of the Unique Identifier constraint
pattern, distinguishing among the “global” and the “container-relative” contexts in
which the constraint could occur;

• appropriate OCL specification patterns for the Unique Identifier constraint pattern,
in each of the above-mentioned cases, given in terms of invariants;

• a pair of solutions for the Unique Identifier constraint pattern given in terms of pre-
conditions;

• proposal of a new atomic constraint pattern, Unique Occurrence in Bag ;
• a proof of concepts illustrating the validity and usefulness of our approach by means

of the OCLE tool, covering both model compilability checks and model testing.
One may argue that the constraints generated by instantiating the proposed OCL specifi-

cation patterns lack the clearness of the ones previously available in the literature. However,
our approach has a great automation potential (either by instantiating the proposed solu-
tions from scratch or by using them through automatic refactorings of old specifications),
so this is by no means a limitation.

In fact, further work targets primarily at automating the use of the proposed approach
in OCLE. In addition, we further aim at identifying new constraint and OCL specification
patterns, along with bringing improvements to the existing ones.

The proposals made in this chapter have been disseminated by means of [27] and [28].

3This is imperative when the model to test is, in fact, a metamodel, since, given their reuse potential,
metamodels require extensive testing on sizable models.



Chapter 5

The Static Semantics of (Meta)Modeling
Languages

While arguing our contribution from the previous chapter, we have presented it as an error
diagnosing means, which serves the purpose of achieving model compilability. This chapter
further elaborates on the model compilability issue, by emphasizing its compulsoriness, the
state of facts in the field and the reasons beneath it, as well as our proposals for improving
this state of facts.

Our contribution here is related to the set up of a framework supporting an accurate spec-
ification of the static semantics of (meta)modeling languages and enabling efficient model
compilability checks. This contribution is twofold. First, we have proposed a set of under-
lying principles concerning the specification of a static semantics. Second, we have provided
enhancements to the definition of the static semantics of the UML metamodel and of three
of the best known meta-metamodels - MOF, Ecore and XCore.

5.1 Motivation

5.1.1 The Model Compilability Problem

The MDE paradigm has triggered a major change of focus in the field of software engineering:
from programs and programming languages to models and modeling languages. As the
artifacts driving a highly automated development process, we argue that the first mandatory
requirement imposed on models in the context of MDE should concern compilability. By
analogy to program compilability, we have defined model compilability as conformance of a
model to the abstract syntax and static semantics of its modeling language. The abstract
syntax is given by the language metamodel, while the static semantics is expressed by means
of the metamodel WFRs.

However, despite the imperative nature of this requirement in the context of MDE,
current practice shows that model compilability is rather a goal than a reality. This state
of facts is deemed to have both human and technological roots.

5.1.2 Diagnosing the State of Facts Regarding Model Compilability

We have argued that, behind the technological factor pointed out by most papers, the real
issues triggering the current state of facts in the area of model compilability are repre-
sented by the inadequate specification and deficient validation of the static semantics of
(meta)modeling languages. The previous statement is motivated by a detailed analysis that

16
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we have performed on the specification and use of assertions within the UML metamodel
and three of the best known meta-metamodels - MOF, Ecore and XCore.

We have argued that the solution to the above-mentioned problems consists in the adop-
tion of a rigorous conceptual framework supporting an accurate definition of the static
semantics of (meta)modeling languages and enabling efficient model compilability checks.
Such a framework should build on a set of well-defined principles regarding the specification
of a static semantics.

5.2 Towards a Conceptual Framework Supporting Model
Compilability - Principles of a Static Semantics Spec-
ification

In order to fully serve its intended purpose of supporting efficient model compilability checks,
there are a number of requirements that any set of WFRs should comply with.

The first one is completeness ; the WFRs should entirely cover the static semantics rules
of the language. This entails an intimate understanding of all metamodel-level concepts and
how they may be suitably related.

A second mandatory requirement concerns the availability of an OCL or OCL-like for-
malization of the entire set of rules. At least two alternatives to this are offered by the
existing approaches: the explicit implementation of rules within the metamodel repository
code (the Ecore way) and an attempt at preserving their fulfillment at any time through
appropriate implementations of the repository modifiers (the XCore way).

In addition to the above, each WFR specification should itself fulfill a number of quality
criteria. The following three are among the most important, the first two being also among
the least addressed in the literature.

1. Detailed, test-driven informal specification. Preceding the formal WFR expression with
a detailed and rigorous informal equivalent is the basic requirement for ensuring correct
understandability of the rule. At its turn, the informal specification should be based
on meaningful test snapshots needed for its validation (both positive and negative).
By analogy to the programming approach known as test-driven development, this test-
driven specification approach provides for a deeper reasoning with respect to the rules,
with a positive effect on the correctness/comprehensiveness of their final statements.

2. Testing-oriented formal specification. The OCL WFRs should be stated so as to facil-
itate efficient error diagnosis in case of assertion failure. In this respect, the previous
chapter argues on the use of appropriate OCL specification patterns.

3. Correct and efficient formal specification. We qualify an OCL WFR as being incorrect
in case it fails to satisfy one of the following two criteria. The first criterion concerns
compilability, therefore conformance to the OCL standard; the second asks for a full
conformance between the OCL specifications and their natural language counterparts.

Another aspect to consider when specifying WFRs refers to choosing the most appropriate
context and shape for each. This involves understanding the differences between a WFR and
a “classical invariant”, as introduced by object-oriented programming (OOP) techniques.

Driven by the above-stated principles, we have evaluated the state of facts regarding the
static semantics specification of UML/MOF, Ecore and XCore and we have made specific
proposals meant to improve it.
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5.3 Enhancements to the Static Semantics of
(Meta)Modeling Languages

5.3.1 Enhancements to the Static Semantics of UML/MOF

5.3.1.1 State of Facts. Related Work

UML is now acknowledged as the de facto object-oriented modeling language. Moreover, its
1.4.2 release [59] has been adopted as an ISO standard. In turn, MOF is the meta-metamodel
standing at the core of the most popular model-driven approach, which is OMG’s MDA.

Through the last decade, there have been various papers (e.g. [69], [42], [25]) concerned
with the adequacy of the WFRs from the OMG documents. However, although most of the
work signaling problems in the static semantics’ definition of UML and MOF has focused on
the uncompilability of WFRs with respect to OCL, a closer look at the standard specifica-
tions (both WFRs and (AOs)) reveals that, apart from compilability issues, the specifications
in question enclose several other drawbacks, such as incompleteness, inconsistency, logical
errors, as well as shortcomings caused by their deficient testing.

5.3.1.2 Proposed Enhancements

Our proposals for improving the static semantics of the UML/MOF metamodels have been
centered around two core metamodeling issues, one related to the semantics of composition
and the other to name uniqueness within namespaces.

On the UML/MOF Composition Relationship
As inferable from the OMG documents ([59], [62]) and papers such as [20], composition is a
stronger form of association, whose semantics may be captured by the following constraints:
[C1] Only binary associations can be compositions ;
[C2] At most one end of an association may specify composition (a container cannot be

itself contained by a part);
[C3] An association end specifying composition must have an upper multiplicity bound less

or equal to one (a part is included in at most one composite at a time);
[C4] Since the composite has sole responsibility for the disposition of its parts, the parts

should be accessible starting from the container (navigation from container to parts
should be enforced).

We have investigated coverage of this semantics through WFRs in both the 1.x and
2.x releases of the UML/MOF metamodels. Our study reveals the incompleteness of the
WFRs set enclosing the semantics of composition in both UML/MOF 1.x and 2.x, and
emphasizes some inconsistencies among the informal statements and the OCL WFRs re-
lated to composition in UML/MOF 2.x. The solutions proposed stem from an analysis
supported by the use of the test-driven specification principle. The possibility of expressing
the same informal constraint in different contexts and under different shapes, as well as
the criteria involved in choosing the right ones have been also discussed and exemplified.

Figure 5.1: UML 1.4 Associations

UML 1.x. The UML 1.x metamodel ex-
cerpt defining associations is illustrated by
the diagram in Figure 5.1. With respect to
enforcing the rules [C1] to [C4], the stan-
dard specification only covers the first three
of them. The OCL WFRs for [C1] and [C2]
are stated in the context of Association,
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while the one for [C3] is written in the con-
text of AssociationEnd.

Our proposals for formalizing the missing constraint, [C4], are provided in Listing 5.1.
Favoring one over the others is a decision that depends on both language semantics and
available tool facilities.
context AssociationEnd inv validCompositionNavigability1:
self.aggregation = #composite implies
self.association.connection->any(ae | ae <> self).isNavigable

context AssociationEnd inv validCompositionNavigability2:
self.association.connection->exists(ae | ae <> self and
ae.aggregation = #composite) implies self.isNavigable

context Association inv validCompositionNavigability3:
self.connection->exists(ae | ae.aggregation = #composite) implies
self.connection->any(ae | ae.aggregation <> #composite).isNavigable

Listing 5.1: Proposed WFR expressions for [C4] in MOF and UML 1.x

From the three alternative WFRs above, the only one fully complying with the UML 1.x
composition semantics is the last one (written in the context of Association). According
to this, the standard WFR for [C3] can be itself rephrased in the Association context,
as follows.
context Association inv validCompositionUpperBound:
self.connection->exists(ae | ae.aggregation = #composite) implies
self.connection->any(ae | ae.aggregation = #composite).multiplicity.max = 1

Listing 5.2: Proposed WFR for [C3] in MOF and UML 1.x

The WFR from Listing 5.2 and the last WFR from Listing 5.1 may also be combined
within a single OCL expression, as shown below. However, this has the disadvantage of
requiring partial evaluation in case of assertion failure, so as to identify precisely which
expression in the conjunction has caused the failure.
context Association inv validCompositionUpperAndNavigability:
self.connection->exists(ae | ae.aggregation = #composite) implies
(self.connection->any(ae | ae.aggregation = #composite).multiplicity.max = 1 and
self.connection->any(ae | ae.aggregation <> #composite).isNavigable)

Listing 5.3: Proposed WFR for both [C3] and [C4] in MOF and UML 1.x

UML/MOF 2.x. As illustrated by Figure 5.2, the UML 2.x Infrastructure brings some
changes in the definition of associations, changes that are also reflected in the MOF 2.0
specification. Unfortunately, concerning the semantics of composition, things seem to have
worsened compared to the 1.x specifications. From those four constraints expressing the
semantics of composition stated at the beginning of this section, only [C1] has a correct
OCL equivalent within the specification documents. As for the others, [C4] seems to
be missing, [C3] has some consistency-related drawbacks, and [C2] appears in the MOF
2.0 specification rather as an informal precondition of the create operation from the
Reflection::Factory package. We have proposed appropriate OCL WFRs for each
of the constraints [C2] to [C4].

The natural context for [C2] is represented by the Association metaclass. Its corre-
sponding OCL invariant is given below.
context Association inv atMostOneCompositeEnd:
self.memberEnd->select(p | p.isComposite)->size() <= 1

Listing 5.4: Proposed WFR for [C2] in MOF and UML 2.x

The rules [C3] and [C4] can be stated both in context of Association and Property,
as shown in Listings 5.5 and 6.1.
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Figure 5.2: MOF 2.0 and UML 2.3 Associations

context Association inv validCompositionMultiplicity1:
self.memberEnd->exists(p | p.isComposite) implies
self.memberEnd->any(p | not p.isComposite).upper = 1

context Property inv validCompositionMultiplicity2:
self.isComposite and self.association->notEmpty() implies
self.association.memberEnd->any(p | p <> self).upper = 1

Listing 5.5: Proposed WFRs for [C3] in MOF and UML 2.x

context Association inv validCompositionNavigability1:
self.memberEnd->exists(p | p.isComposite) implies
self.memberEnd->any(p | p.isComposite).isNavigable()

context Property def: isNavigable() : Boolean =
(self.class->notEmpty()) xor (self.owningAssociation->notEmpty() and
self.owningAssociation.navigableOwnedEnd->includes(self))

context Property inv validCompositionNavigability2:
self.isComposite and self.owningAssociation->notEmpty() implies
self.owningAssociation.navigableOwnedEnd->includes(self)

Listing 5.6: Proposed WFRs for [C4] in MOF and UML 2.x

On Forbidding Name Clashes within Namespaces
We have uncovered three types of errors occurring within the standard WFR and AOs pro-
hibiting name clashes within namespaces: syntactic errors, logical ones, as well as faults
coming from failure to provide the information required for error diagnosis in case the asser-
tion gets violated. The solution proposed for the latter case involves the use of an appropriate
OCL specification pattern.
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5.3.2 Enhancements to the Static Semantics of Ecore

5.3.2.1 State of Facts

Ecore is the meta-metamodel of EMF and the best known EMOF (Essential MOF) imple-
mentation. However, Ecore does not match EMOF exactly. On the one side, the approach
taken with Ecore is more pragmatic and implementation-oriented. On the other side, starting
with EMF 2.3, Ecore includes constructs for modeling with generics [53]; this is considered
to be a departure from EMOF, which does not currently provide such support.

The Ecore repository includes a set of WFRs implemented directly in Java, within the
EcoreValidator class. However, even though EMF integrates an OCL plugin (MDT-OCL
[38]) and there is a functional approach available enabling the automatic translation of OCL
assertions into Java code [34], we have not found any OCL equivalent of the implemented
constraints. Moreover, to the best of our knowledge, there is a single paper in the literature
approaching the OCL formalization of Ecore WFRs. The paper in question [44] deals solely
with a few rules regarding generics.

5.3.2.2 Proposed Enhancements

Driven by the previously reported state of facts and in accordance to one of the principles
exposed in Section 5.2, regarding the necessity of an OCL(-like) formalization of a static
semantics, we have defined, tested and validated in OCLE a comprehensive set of OCL
WFRs for the Ecore meta-metamodel. The entire set of rules can be found at [4]. Within
this section, we have approached some WFRs related to the Ecore generics. Choosing these
particular constraints for exemplification purpose is due to both their complexity level (since
they are non-trivial WFRs) and the fact that they allow a close comparison with related
work described in [44].

The Ecore Generics. Figure 5.3 shows that part of the Ecore meta-metamodel that
ensures the generic modeling support it provides. Similar to Java (whose generics model

ENamedElement

EClass

ETypedElement

EOperationETypeParameter 0..n
+eTypeParameters
0..n

{ordered}

EClassifier
+ instanceTypeName : String

0..n+eTypeParameters 0..n
{ordered}

EGenericType

0..n +eTypeArguments0..n
{ordered}

0..1 +eUpperBound0..1 0..1 +eLowerBound0..1

0..n

+eAllGenericSuperTypes

0..n

{ordered}

0..n

+eGenericSuperTypes

0..n

{ordered}

0..1

+eGenericType

0..1

0..n

+eGenericExceptions

0..n

{ordered}

0..n+eBounds 0..n
{ordered}

0..1 +eTypeParameter0..1

1+eRawType 1
0..1 +eClassifier0..1

File: D:\Vladi\Cercetare\Proiecte\PN2\Idei\CUEM_SIVLA\work\Ecore\Rose\Ecore.mdl    1:02:55 AM Tuesday, November 17, 2009    Class Diagram: 
ecore / Generics  Page 1

Figure 5.3: Ecore generics

has inspired the one in Ecore),
Ecore enables generic type and
operation declarations, as well as
generic type instantiations (also
known as parameterized types).
The supporting metamodel con-
cepts are ETypeParameter and
EGenericType respectively. As-
suming a closer familiarity of the
reader with Java than Ecore, we
have explained both concepts by
means of relevant model examples,
starting from their Java equiva-
lents. An ETypeParameter in-
stance stands for a type parameter
used by either a generic classifier
or a generic operation declaration.
An EGenericType instance may
denote one of the following: a type
parameter reference, a (generic) type invocation, or a wildcard. EGenericType instances
can play various roles in an Ecore model, each kind of usage being constrained by corre-
sponding WFRs. Such an instance can be exactly one of the following: a generic supertype
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of a class, the type of a typed element (attribute, reference, operation, parameter), a bound
of a type parameter, one of the type arguments of a generic type invocation, the upper or
lower bound of a wildcard, or an exception type.

On a WFR for Generics in Ecore
Within this section, we have provided an OCL specification for the following informal con-
straint: “Assuming that a generic type denotes a type parameter reference, the referenced
type parameter must be in scope and must not be a forward reference. The type parameter
is in scope if its container is an ancestor of this generic type within the corresponding Ecore
containment tree”. The proposed OCL WFRs are illustrated in Listing 5.7; the AOs involved
are provided in Listings 5.8 and 5.9.
context EGenericType
-- The referenced type parameter must be in scope, i.e.,
-- its container must be an ancestor of this generic type ...
inv InScopeTypeParameter:
self.isTypeParameterReference() implies
self.ancestors()->includes(self.eTypeParameter.eContainer())

context EGenericType
-- ... and must not be a forward reference.
inv NotForwardReference:
(self.isTypeParameterReference() and self.isUsedInATypeParameterBound())
implies
(let refParameter : ETypeParameter = self.eTypeParameter
let boundedParameter : ETypeParameter = self.boundedTypeParameter()
let paramSeq:Sequence(ETypeParameter)=
(if refParameter.eContainer().oclIsKindOf(EClassifier)
then refParameter.eContainer().oclAsType(EClassifier).eTypeParameters
else refParameter.eContainer().oclAsType(EOperation).eTypeParameters
endif)

let posRefParameter : Integer = paramSeq->indexOf(refParameter)
let posBoundedParameter : Integer =
(if paramSeq->includes(boundedParameter)
then paramSeq->indexOf(boundedParameter)
else -1
endif)

in
((posBoundedParameter <> -1) implies
((posRefParameter < posBoundedParameter) or
((posRefParameter = posBoundedParameter) and (not boundedParameter.eBounds->includes(self)))
)
)
)

Listing 5.7: Proposed OCL WFRs for EGenericType prohibiting invalid type
parameter references

context EGenericType def: isTypeParameterReference() : Boolean =
not self.eTypeParameter.isUndefined()

context EObject def: ancestors() : Set(EObject) =
let empty : Set(EObject) = Set{} in
if self.eContainer().isUndefined() then empty
else Set{self.eContainer()}->union(self.eContainer().ancestors())
endif

context EObject def: eContainer() : EObject = oclUndefined(EObject)

context EParameter def: eContainer() : EObject = self.eOperation
--analogous definitions of eContainer() for EPackage, EClassifier, EStructuralFeature, EOperation

context ETypeParameter def: eContainer() : EObject =
let classifier = EClassifier.allInstances()->any(c | c.eTypeParameters->includes(self))
in (if not classifier.isUndefined() then classifier

else EOperation.allInstances()->any(o | o.eTypeParameters->includes(self))
endif)

--analogous definition of eContainer() for EGenericType

Listing 5.8: Query operations used by InScopeTypeParameter
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Figure 5.4: Ecore containment relationships

context EGenericType def: isUsedInATypeParameterBound() : Boolean =
self.ancestors()->exists(o | o.oclIsTypeOf(ETypeParameter))

context EGenericType def: boundedTypeParameter() : ETypeParameter =
self.ancestors()->any (o | o.oclIsTypeOf(ETypeParameter)).oclAsType(ETypeParameter)

Listing 5.9: Query operations used by NotForwardReference

5.3.2.3 Related Work

As previously pointed out, the only available benchmarks for comparing our work with have
been the EMF implementation of the EcoreValidator and the paper [44].

The EMF EcoreValidator. We have argued that the availability of an OCL formalization
of the Ecore WFRs has at least two major advantages. On the one side, OCL is the standard
language for expressing such rules, the OCL assertions being, by nature, more compact and
intelligible compared to their equivalents in a programming language. On the other, in the
context of MDE, there is tool-support enabling the automatic translation of OCL expressions
into corresponding programming-language code (OCLE and [34] are two notable examples).

In addition, even though the Ecore generics declare to closely mirror their Java corre-
spondents, there are some discrepancies among the Java specification of generics and the
rules implemented by the EcoreValidator. As an example, the following rule concerning the
correct declaration of generic types and methods is enforced by the Java Language Specifi-
cation [46] (pp. 50), while missing from the EcoreValidator implementation: “Type variables
have an optional bound, T & I1 ... In. The bound consists of either a type variable, or a
class or interface type T possibly followed by further interface types I1, ..., In. ... It is a
compile-time error if any of the types I1 ... In is a class type or type variable. The order of
types in a bound is only significant in that ... and that a class type or type variable may only
appear in the first position.”. For this rule, we have proposed the following OCL WFR.
context ETypeParameter
inv ValidBounds:
-- If a type parameter has bounds and the first bound is a
-- type parameter reference, then there are no other bounds.
(self.eBounds->notEmpty() and self.eBounds->first().isTypeParameterReference() implies
self.eBounds->size() = 1)
and
-- If there are at least two bounds, then all
-- except (maybe) the first one should refer to interface types.
(self.eBounds->size() >= 2 implies Sequence{2..self.eBounds->size()}->reject(i |

self.eBounds->at(i).hasInterfaceReference())->isEmpty())

Listing 5.10: Proposed OCL WFR for ETypeParameter prohibiting invalid type
parameter bounds
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The above WFR makes use of the following query operations:
context EGenericType
def: hasClassifierReference() : Boolean = not self.eClassifier.isUndefined()

def: hasClassReference() : Boolean =
self.hasClassifierReference() and self.eClassifier.oclIsTypeOf(EClass)

def: hasInterfaceReference() : Boolean =
self.hasClassReference() and self.eClassifier.oclAsType(EClass).interface

def: isTypeParameterReference() : Boolean = not self.eTypeParameter.isUndefined

Listing 5.11: Query operations used by ValidBounds

The Approach Taken in [44]. This paper proposes a number of OCL WFRs meant
to check the well-formedness of generic type declarations and that of parameterized types.
We have analyzed these rules with respect to both their intended purpose and our goal of
defining a complete set of OCL WFRs for Ecore. We argue that, even though they are a
good starting point and comparison base, the WFRs in question have various shortcomings,
triggered by incompleteness, redundancy and the use of forAll. As an example, the WFRs
meant to check the well-formedness of a generic type declaration only constrain the bounds
of a type parameter to reference parameters from within the same type declaration, without
prohibiting forward referencing (as opposed to our proposal from Listing 5.7). Moreover,
the rules are only focused on the correct definition and instantiation of generic classifiers;
generic operations are not taken into account and nor are the various possible usages of a
generic type.

5.3.3 Enhancements to the Static Semantics of XCore

5.3.3.1 State of Facts

Figure 5.5: An excerpt of the XCore meta-metamodel

XCore is the bootstraping kernel of
XMF, a MOF-like metamodeling
facility focused on capturing all as-
pects of a language definition - ab-
stract syntax, concrete syntax and
semantics. Unlike MOF though,
XMF is completely self-defined and
provides platform-independent ex-
ecutability support by means of
an executable OCL dialect named
XOCL.

The official XMF reference [31]
acknowledges the value of WFRs
and promotes their use in defin-
ing the static semantics of model-
ing languages. Still, the document
does not describe (neither infor-
mally, nor formally) any WFR for
the XCore meta-metamodel. As
regarding the XMF implementa-
tion, this does only include two
explicit XOCL constraints. Apart
from these, there are a number of



Chapter 5. The Static Semantics of (Meta)Modeling Languages 25

other rules intended to be preserved by means of a suitable implementation of modifiers.
We have identified various deficiencies of this latter technique. Moreover, even with this
approach, the XMF implementation does not cover some of the elementary WFRs that are
compulsory for object-oriented concepts, such as avoiding name conflicts among features of
the same class/classifier, or the proper management of contained-container dependencies.

5.3.3.2 Proposed Enhancements

As a solution to the above-mentioned problems, we have proposed a set of XOCL WFRs
for the XCore meta-metamodel, which we have tested on relevant model examples. The
entire set of rules, together with the corresponding tests, can be consulted at [4]. Within
this section, we have only discussed two relevant examples, related to name uniqueness and
containment respectively.

On Avoiding Name Conflicts Among Owned and Inherited Members
As previously stated, one of the WFRs not covered by the XMF implementation concerns
the name conflict among an attribute owned by the current class and attributes inherited
from its ancestors. In order to identify such invalid models, we have proposed a WFR
with the following informal statement: There should not be any name conflicts among the
attributes owned and inherited by a class. Listing 5.12 provides its formal XOCL equivalent.
The referenced part of the XCore metamodel is illustrated in Figure 5.5.
context Attribute @Constraint uniqueName
let allAtts = self.owner.allAttributes() then

sameNameAtts = allAtts->excluding(self)->select(att |
att.name.asSymbol() = self.name.asSymbol())

in sameNameAtts->isEmpty()
end

fail
let sameNameAtts = self.owner.allAttributes()->excluding(self)->

select(att | att.name.asSymbol() = self.name.asSymbol()) then
msg = "Attribute name duplication! Inherited/owned attributes of " +

self.owner.toString() + " with the same name: "
in @While not sameNameAtts->isEmpty() do

let att = sameNameAtts->sel
in msg := msg + att.owner.toString() + "::" + att.toString() + "; ";

sameNameAtts := sameNameAtts->excluding(att)
end

end;
msg

end
end

Listing 5.12: Proposed XOCL WFR prohibiting name conflicts among owned and
inherited attributes of a class

On the XCore Containment Relationship
As shown by the metamodel excerpt in Figure 5.5, XCore represents containments explicitly,
by means of the Contained and Container abstract metaclasses. According to the
commonly-agreed semantics of containments, we argue that there are two fundamental rules
that any XCore model should fulfill in this respect. These rules correspond to the UML
composition constraints [C3] and [C2] respectively, as stated in Subsection 5.3.1.2.
[C1’] A part should belong to a single container at a given time.
[C2’] A container cannot be itself contained by one of its parts.

For the first rule, we have proposed the XOCL WFR from Listing 5.13, with the fol-
lowing informal statement: “All Contained instances that belong to the contents table
of an IndexedContainer should have that container as owner.”. In fact, the proposed
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constraint captures anomalies of a more general nature than just parts simultaneously be-
longing to at least two different containers (e.g. parts belonging to the contents table of
a container and having no owner set at all).
context IndexedContainer @Constraint validOwnerForContents
self.contents.values()->select(v | v.oclIsKindOf(Contained) and

v <> null)->reject(v | v.owner = self)->isEmpty()

fail "The elements from " + self.contents.values()->select(v | v.oclIsKindOf(Contained)
and v <> null)->select(v | v.owner <> self).toString() +

" should have " + self.toString() + " as the owner!"
end

Listing 5.13: Proposed XOCL WFR for containment constraint [C1’]

For the second rule, we have proposed the XOCL WFR below, which applies to all
indexed containers, except for the Root namespace (in XMF, Root is the global namespace
in which everything is contained, itself included). Its informal equivalent states that “No
IndexedContainer different from the Root namespace can be owned by one of its parts.”.
context IndexedContainer @Constraint notOwnedByPart
(self <> Root and self.oclIsKindOf(Contained)) implies
self.contents.values()->select(v | self.owner = v)->isEmpty()

fail "This container is owned by each of its parts from " +
self.contents.values()->select(v | self.owner = v).toString()

end

Listing 5.14: Proposed XOCL WFR for containment constraint [C2’]

5.4 Summary
Within this chapter, we have contributed to the set up of a framework supporting an accurate
specification of the static semantics of (meta)modeling languages and enabling efficient model
compilability checks. This improves the state of the art with the following:

• a detailed analysis of model compilability by analogy to program compilability;
• a set of underlying principles concerning the specification of a static semantics;
• a number of enhancements to the static semantics specification of the UML metamodel

and MOF meta-metamodel;
• a comprehensive set of OCL WFRs and AOs (additional operations) meant to enhance

the static semantics specification of the EMF Ecore meta-metamodel;
• a comprehensive set of XOCL WFRs and AOs meant to enhance the static semantics

specification of the XMF XCore meta-metamodel.
Further work aims primarily at extending the set of corrected/added rules, so as to cover

the entire UML/MOF 2.x metamodels. A complementary issue would be that of investi-
gating the problems of consistency and redundancy in a given set of constraints (WFRs in
particular). The translation into a formal language, such as B, and the use of the associated
prover tools may help in this respect. Another direction of future work could be the identifi-
cation and formalization of a core set of constraint patterns occurring in meta-metamodels.

The principles, together with the enhancements to the static semantics of UML and
MOF have been published in [26], the proposals concerning the static semantics of Ecore
in [80], while those for XCore in [76] and [75]. The contributions in this chapter build on
previous results, reported in [29].



Chapter 6

The Specification of Software
Components

In the previous chapters, we have focused on high-level software abstractions (such as design
patterns, constraint patterns and metamodels) and means of providing appropriate formal
foundations for their reuse. In this chapter, we report on two contributions in the area of
software components. The first is a contribution to a reverse engineering approach aimed at
extracting structural and behavioral abstractions from component system implementations.
This has been established as part of an ECO-NET international project [1, 10]. The second
is intended to set the bases of a framework able to support a full contractual specification
of software components, with a special emphasis on semantic contracts.

6.1 Towards Reverse Engineering Component Specifica-
tions from Code

6.1.1 Motivation and Related Work

The motivation for the research reported in this section is given by the existing gap among
academic and industrial component-based approaches [10]. Namely, the academic ones (e.g.
Fractal, SOFA, Kmelia, KADL) focus on specification; they define abstract, hierarchical
component models, enriched with formalisms for representing behaviors and means of check-
ing various system properties, such as safety or liveness. Some also cover refinement and
code generation, but many of them do not address implementation issues at all. In turn, the
industrial approaches (e.g. CCM, EJB, OSGI, .NET) are focused on implementation; they
offer strong and mature run-time infrastructures, but define only flat components and lack
the model checking support needed for ensuring safe component reuse.

Such a discrepancy triggers a lack of traceability among component specifications and
implementations. In turn, this makes it hard to ensure at the implementation level the
fulfillment of properties proved for the associated abstract models and leads to maintenance
problems (such as architectural erosion or architectural drift). Under MDE, the solutioning
of such a gap can be approached by either direct ([65, 67]) or reverse engineering techniques
([14, 64]). In this context, the goal of the ECO-NET project [1]1 has been to contribute

1An international project to which we have taken part. The project, joining four research groups - the
french teams COLOSS and OBASCO from LINA, University of Nantes, the czech group DSRG from Charles
University in Prague, and the romanian team LCI from Babes-Bolyai University of Cluj-Napoca - has been
funded by the French Ministry of Foreign Affairs.

27
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to the reverse engineering way, by developing techniques and tools for extracting structural
and behavioral abstractions from component code [10].

6.1.2 General Approach

The project has been aimed at establishing a link between component code (the concrete
or the source model) and component specifications (the abstract or the target model). In
order to properly cope with the complexity of such a process, the concrete model has been
limited to Java source code and the abstract one to instantiations of component models
covering both structural and behavioral features, such as SOFA [22], Kmelia [9], KADL [65],
or Fractal [21].

The main contribution reported by the project consists in the set up of a reverse-
engineering framework providing the following features:

• A Common Component MetaModel (CCMM ) that addresses both the issue of handling
several component models (SOFA, Kmelia, KADL, Fractal) in a generic way and that
of storing the required traceability links among the source and target models. This
metamodel is used to generate the API (Application Programming Interface) shared
by the following two abstraction processes;

• A structural abstraction process (process SA) and a corresponding tool used to extract
architectural information from the source model;

• A behavioral abstraction process (process SB) and a corresponding prototype tool,
which uses the source model and the output of process SA in order to extract behavioral
specifications of components.

Within the envisioned engineering process, the required traceability links are stored both
in the target model (by means of specialized attributes defined for the CCMM metaclasses)
and the source one (by means of dedicated Java annotations that have been defined).

6.1.3 The Common Component MetaModel (CCMM)
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Figure 6.1: CCMM v1.1

Our contribution in the project has
been related to the definition of the
CCMM metamodel, as well as its
validation and generation of the as-
sociated API. This metamodel had
to satisfy at least three basic con-
straints. The first constraint con-
cerns genericity; the metamodel
had to abstract over different con-
crete component models (SOFA,
Kmelia, KADL, Fractal), by gath-
ering a common set of concepts
and postponing specific concepts
to concrete model mappings. Sec-
ond, it had to include means for
managing the tight connections be-
tween model elements and the cor-
responding (Java) features imple-
menting them. Third, the meta-
model had to be fully specified,
including all the necessary well-
formedness rules and useful query
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operations. Moreover, appropriate tool support for metamodel testing and repository code
generation had to be ensured.

The above-mentioned requirements have led to the definition of the Common Component
MetaModel (CCMM), whose overall architecture is illustrated in Figure 6.1. The thesis
includes a detailed description of all packages used for the generation of the CCMM API,
including concepts, relationships, WFRs and AOs.

As an example, Figure 6.2 illustrates the contents of the CCMM_Components pack-
age, which is the core CCMM package, providing a black-box definition of components.
According to the diagram, a ComponentType is a black-box entity, defined as a special-
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Figure 6.2: CCMM_Components package

ization of Classifier. Any ComponentType interacts with the environment through a
number of InteractionPoints. Each of these expresses either a provision or a require-
ment, and may target either an Interface or an Operation. The type of the target
depends on the concrete component model considered; it is an interface in case of SOFA,
and an operation in case of Kmelia. Nevertheless, all interactionPoints owned by a
certain ComponentType should have the same target type, fact expressed by means of the
consistentInteractionPoints OCL WFR below.
context ComponentType
inv consistentInteractionPoints:
-- if at least one interaction point targets an interface,
self.interactionPoints->exists(ip:InteractionPoint | ip.targetsInterface()) implies
-- all interaction points should target interfaces
self.interactionPoints->reject(ip:InteractionPoint | ip.targetsInterface())->isEmpty()

context InteractionPoint::targetsInterface():Boolean
body: self.targetO.oclIsUndefined()

6.1.4 Tool Support and Validation

We have implemented CCMM as an Ecore metamodel, in order to be able to benefit from
the strong EMF tool support. Based on it, we have generated the associated repository
code (including the full implementation of WFRs and AOs), as well as a corresponding
tree-like component model editor. Both repository and editor have been made available as
Eclipse plugins. Validation of the proposed approach has been performed on the non-trivial
CoCoME benchmark [68]. This includes tests and validation of the CCMM metamodel,
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with all its associated WFRs and AOs. Full details regarding the processes, toolset and
experimentations leaded can be found at the ECONET SVN repository [2].

6.2 ContractCML - A Contract-Aware Component Mod-
eling Language

6.2.1 Motivation and Related Work

A safe black-box reuse of any software component requires it to be accompanied by a compre-
hensive contractual specification of its required and provided services. Four contract levels
have been identified to apply to software components [15], namely: basic, behavioral, synchro-
nization, and quality-of-service. A first level basic contract introduces the so-called syntactic
specification [33] of a software component; this merely includes signatures of required and
provided services. The second level behavioral contract enriches the previous one, by adding
a semantic specification [33] of services; this comprises a precise functional description of
each service, including legal conditions under which it should be invoked (pre-conditions),
as well as expected effects of its execution (post-conditions). The second level contracts
specify behavior in terms of individual services, regarded as atomic operations executing
in a sequential context. As opposed to this, level three synchronization contracts describe
the global behavior of component objects. This includes dependencies between services per-
taining to a component, such as sequence, parallelism or shuffle, in a distributed concurrent
environment. Finally, level four contracts cover non-functional component properties (e.g.
maximum response delay, average response, precision of results).

Although the compulsoriness of a semantic specification for software components is unan-
imously acknowledged, the only form of specification employed by dedicated industrial com-
ponent models like EJB, COM, or CCM remains the syntactic one [33]. Some improvements
have been brought by academic component models, some of which have introduced facil-
ities for describing component behaviors. The Fractal and SOFA component models, for
example, use behavior protocols in this purpose [66]. Nevertheless, this kind of specification
rather fits level-three contracts, while missing level-two semantic information. Nothing can
be said about the effects of invoking a service from an interface, except for what might be
assumed from its own name, or the names and types of its parameters.

As the four types of contracts provide complementary information, a thorough compo-
nent specification should include them all. Moreover, since we see them as interdependent
(accomplishing a certain contract level stands as a precondition for the ones above it), skiping
an intermediary level would result in essential loss of information.

In this context, our general aim has been that of setting the bases of a framework sup-
porting a full (four-level) contractual specification of software components, thus enabling
component interoperability checks. Such a framework should be based on a corresponding
domain-specific modeling language (DSML). The motivation for this is twofold. Firstly,
since DSMLs are tailored to particular problem domains, the models that use them are
easier to understand and manage compared to those created with a general purpose mod-
eling language (e.g. UML). Secondly, our choice enables us to benefit from a powerful tool
support. Indeed, EMF [36], GMF [37], oAW [5] and XMF-Mosaic [3] are MDE meta-tools
providing rich functionalities. Namely, these meta-tools assist users in specifying, testing
and validating DSMLs at all language levels: abstract syntax, concrete syntax, and seman-
tics. Moreover, having a validated DSML, the above-mentioned frameworks provide support
in developing dedicated (domain specific) modeling tools.
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6.2.2 The ContractCML Metamodel

Within this section, we have introduced ContractCML (Contract Component Modeling Lan-
guage), the DSML that we have proposed as the backbone of our approach. ContractCML
is a hierarchical component modeling language (as opposed to a flat one), since it allows
defining and managing not only primitive components, but also composed ones. But most
important, as its name shows, it is a contract-aware component modeling language, allowing
the specification of component-related contracts. At the moment, it covers the first two
levels2, but its extensible architecture facilitates the adding of new levels in a non-invasive
way.

6.2.2.1 Metamodel Overview

The ContractCML metamodel has been designed in a modular style, starting with basic syn-
tactic component concepts, on which semantic and architectural aspects have been added.
This has resulted in a loosely coupled, highly extensible architecture. The metamodel pack-
ages, as well as their inter-dependencies, are illustrated in Figure 6.3.

Basic

(from ContractCML)

InterfaceSpec

(from ContractCML)

BlackBoxComponent

(from ContractCML)

Architecture

(from ContractCML)

WhiteBoxComponent

(from ContractCML)

SemanticSpec

(from InterfaceSpec)

SyntacticSpec

(from InterfaceSpec)

Figure 6.3: ContractCML architecture

The Basic package contains general-
purpose, elementary modeling concepts.
Depending on Basic, the InterfaceSpec
package wraps metaclasses that allow defin-
ing the syntactic and semantic contracts
published by software components. Fur-
ther, BlackBoxComponent includes con-
cepts offering a client’s view of components.
From this perspective, each component has
a corresponding component type, that may
be thought of as the collection of all ports
required and provided by the component in
question; each port defines an interaction
point with the environment and is typed by
an interface. The Architecture package
bundles concepts used for describing compo-
nent assemblies; an architecture owns a set of component instances and a set of assembly
bindings among them. Finally, having the black box and architectural concepts defined,
the WhiteBoxComponent overpasses the client’s perspective, offering a deeper, architec-
tural view of components. Components are classified as primitive or composed, composed
components owning an architecture and a number of delegation bindings.

This section details the semantics of the metaconcepts contained in these packages, in-
cluding all WFRs and AOs. Among the most relevant WFRs are those expressing the
semantics of assembly and delegation bindings.

6.2.2.2 Basic Contracts. Syntactic Specification of Interfaces

The elements from within SyntacticSpec, one of the two InterfaceSpec packages,
describe component interfaces from a syntactic perspective. An interface is a named element
that consists of a collection of operations, each operation having itself a name, an ordered
list of parameters and, possibly, a return type; each parameter has a name, a type and a
sort, with the latter specifying the dataflow direction: input, output, both, or unknown. By
means of the metaclasses defined in this package (Interface, Operation, Parameter,

2We have focused on the second level, that is missing from the current component models.
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ParameterSort), ContractCML is allowed to express basic contracts. Such contracts
stand at the basis of component type checking and component interoperability verifications.
The syntactic compatibility of operations and interfaces (in terms of exact matching) may
be checked by means of appropriate AOs that we have defined here.

Publishing a syntactic specification of all provided and required interfaces of a component
is mandatory in order to make a system that uses it work. However, in order to ensure that
it works right, delivering the intended functionality, behavioral information regarding the
respective component should be also provided. Such behavioral information may be either
interface-specific (capturing aspects regarding the functionality of an interface independently
of other interfaces belonging to the same component) or global (involving several compo-
nent interfaces). In addition to the previously mentioned concepts, we have introduced
in this package a BehaviorSpec metaclass for abstracting interface-specific behavioral
information; each BehaviorSpec instance is owned by its corresponding Interface ob-
ject. Concrete behavioral specifications (either at level two - expressing the semantics of
services by means of pre/post-condition pairs, or at level three - constraining the order of
service calls), should subclass BehaviorSpec and be described in separate packages. This
approach ensures a good metamodel manageability and extensibility.

6.2.2.3 Behavioral Contracts. Semantic Specification of Interfaces

BehaviorSpec
(from SyntacticSpec)

Constraint
language : String
expression : String

NamedElement

name : String
(from Basic)

EClass
(from Basic)

Precondition Postcondition

Operation
(from SyntacticSpec)

OperationSpec

0..n
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Figure 6.4: Semantic specification of in-
terfaces

Built on SyntacticSpec, the SemanticSpec
package adds second-level contract support to
our component language. It follows a Design by
Contract (DBC) approach in order to provide a
semantic specification of interfaces. The meta-
classes represented in Figure 6.4 and the rela-
tionships among them have been inspired by the
specification concepts introduced in [24].

A DBCSpec is a kind of behavioral specifi-
cation that may be attached to an interface. It
consists of a collection of operation specifications
(one for each service/operation exposed by the
interface), together with an interface information
model (or state model). As defined in [24], the
information model corresponding to an interface
is an abstraction of that part of a component’s
state that affects or may be affected by the ex-
ecution of operations in the interface. It does
not expose implementation details. It is merely
an abstraction that helps in defining operations’
behavior.

The OperationSpec metaclass allows rep-
resenting the behavior of its associated Operation, stated in terms of pre/post-condition
pairs. A Precondition is a predicate expressed in terms of the input parameters and
the state model; a Postcondition is also a predicate, involving both input and output
parameters, as well as the state just before the invocation and immediately after.

We have emphasized the challenges we had when transposing into our metamodel the
concepts used in [24] for the semantic specification of interfaces. The main one is related
to the need of introducing class modeling concepts into ContractCML, in order to properly
represent information models.
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6.2.2.4 A Model Weaving Approach to Representing Information Models

We have taken a model weaving approach in order to provide a solution to the previously
mentioned problem. Model weaving can be regarded as a special kind of model transforma-
tion, the latter being generically defined as the process of creating an output model based
on one or more input models [47]. By model weaving, different (but related) models can
be composed into a consistent whole. Two types of weaving can be distinguished: symmet-
ric and asymmetric. An asymmetric weaving works with a base model and one or several
aspect models which it integrates into the base in a user controllable way, as opposed to a
symmetric one, where there is no designated base model [47].

We have used XWeave [47], an asymmetric model weaving tool based on the EMF Ecore
meta-metamodel. When performing the weaving, we have taken ContractCML as the base
and Ecore itself as the aspect. The weaving has been based on name matching3 among the
analogous concepts highlighted in Figure 6.5. We have provided the oAW workflow used to
perform the weaving.

EObject

EModelElement

ENamedElement

EClassifier ETypedElement

EFactory EAnnotation

EPackage EEnumLiteral

EClass EDataType

EEnum

EStructuralFeature EOperation EParameter

EAttribute EReference

ModelElement

NamedElement

name : String

EClass

Type TypedElement1 0..n

type

1 0..n

(a) (b)

Figure 6.5: Ecore (a) and ContractCML::Basic (b) concepts correspondence

6.2.3 ContractCML Modeling Example

So as to provide a modeling example using ContractCML, we have considered a simplified
variant of the hotel reservation system case study used in [24] and [30]. This has offered
the possibility to show some concrete syntax elements of our language, as well as to em-
phasize the advantages of having a component modeling language that includes semantic
specification facilities. Thus, following the presentation of the model, we have conducted a
reasoning with respect to establishing the plug-in compatibility of two interfaces (a required
and a provided one), based on their semantic specification. Both information model and
operations’ specification have been taken into account.

6.2.4 Component Models’ Simulation Using ContractCML

Within this section, we have proposed a simulation approach for ContractCML component
services, that may be employed in component interoperability tests. This method relies on
our proposal for representing interface information models. The simulation takes place in

3The Ecore concepts in question have been previously remaned, so as to enable the weaving
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the context of the XMF-Mosaic framework, being based on an XCore representation of the
ContractCML metamodel and the use of XOCL.

6.2.4.1 Proposed Simulation Method

In Section 6.2.2.3, we have emphasized the role of an interface information model in the
semantic specification of services pertaining to the interface in question. Within this sec-
tion, we have illustrated the value of such an information model in simulating the execution
of these services, using an executable OCL dialect (XOCL) and its associated execution
framework (XMF Mosaic). The proposed simulation method has required enriching the
ContractCML metamodel, enabling it to represent not only usage contracts, but also re-
alization4 contracts [24]. A realization contract attached to a component type contains
information regarding the way in which its provided services should be designed in terms of
the required ones. The rules related to the definition of such contracts have been formalized
as XOCL constraints.

The simulation logic has been implemented in XOCL, within the ContractCML::Simulator
metaclass. Its simulate() method allows simulating the execution of a component ser-
vice, both the service and its call arguments being sent as parameters to the method. The
component in question is assumed to be a part of an architecture in which its required sevices
are provided by other components. The core aspect of the proposal consists in the strategy
used to configure the object which ensures the simulation infrastructure.

6.2.4.2 Validation

The proposed simulation approach has been validated using an extended version of the
Reservation System case study introduced in Subsection 6.2.3, illustrating its usefulness in
components interoperability tests.

6.3 Summary
Our contribution in the area of software components’ specification is twofold.

First, we have contributed to a reverse engineering approach aimed at bridging the gap
between component implementations and specifications. This approach has been achieved
as a result of an international collaboration, in an ECO-NET project. Specifically, we have
been involved in:

• defining a common component metamodel (CCMM) to be used as the target of the
envisioned reverse engineering process. The metamodel has been tested and validated
on a non-trivial component benchmark;

• generating an associated repository and model editor, both made available as Eclipse
plugins. The repository plugin integrates the required functionality for checking the
compilability of CCMM models.

The entire CCMM metamodel specification, including all WFRs and AOs, is available in
[11]. The toolchain developed to support the proposed reverse engineering approach has
been reported in [12].

Second, we have proposed an integrated approach for handling components’ contracts
and components’ composition. Our proposal improves the state of the art in the field of
checking components’ interoperability by means of:

4The previously discussed contracts are generically referred as usage contracts
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• ContractCML, a hierarchical component DSML (domain-specific modeling language)
focused on representing components’ usage contracts. At the moment, ContractCML
supports the first two contract levels, syntactic and semantic, but its extensible archi-
tecture allows the remaining levels (synchronization and quality of service) to be added
in a natural manner. The main advantage of ContractCML over existing industrial
and academic component models consists in its ability to represent semantic contracts;

• a simulation method for ContractCML component services within the XMF execution
framework. The simulation approach relies on the method proposed for representing
semantic contracts and enables reasoning on components’ semantic interoperability.

These proposals have been disseminated through the papers [77] and [78, 79] respectively,
while relying on previous work with respect to the specification of software components,
reported in [83].

Further work is needed to complete the definition of the envisioned component modeling
framework. As a first step, we aim at integrating the remaining two contract levels into the
language metamodel. Then, we plan to provide a visual concrete syntax to the language
and develop the required tool support for using it. This should allow creating component
assemblies and reasoning on component interoperability issues. Investigating the possibility
of using a theorem prover (such as AtelierB) for establishing the semantic interoperability
of components (a far more reliable alternative to simulation) is also considered.



Chapter 7

Conclusions

Reaching a high level of reuse of its artifacts and processes is a maturation proof of soft-
ware development as an engineering discipline. However, no reuse technique can deliver its
promises in the absence of an adequate formal framework. This thesis gathers a number
of contributions with respect to the use of formal approaches for ensuring an appropriate
formal foundation to software reuse.

The first contribution reported in this thesis fits in the domain of design pattern’s for-
malization. Our proposal consists in a full formalization of the GoF State design pattern
using the B formal method. This covers both the formal definition of the pattern itself and
the formalization of its associated reuse process. The correctness of the whole approach has
been established by means of the AtelierB prover.

The second contribution brought by this thesis concerns an appropriate definition of
constraint patterns for object-oriented class models. Namely, it consists of a new approach
(that we refer as MDE-driven) to stating OCL-based solutions of such patterns (named OCL
specification patterns). The rationale is provided by the primary role of assertions within
an MDE development process (that of enabling efficient model correctness verifications),
which requires them to ensure adequate error diagnosing support. The whole approach has
been validated using the OCLE tool, by illustrating its value with respect to both model
compilability checks and model testing.

Our third contribution concerns the formalization of the static semantics of (meta)mod-
eling languages. This contribution is twofold. On the one side, we have proposed a set of
principles regarding an appropriate specification of a static semantics. On the other, we
have provided enhancements to the static semantics of UML, MOF, Ecore and XCore, in
accordance to these principles. All proposed well-formedness rules and additional operations
have been tested and validated using OCLE, EMF, and XMF-Mosaic respectively.

In the last part of this thesis, we have reported on two contributions in the area of
software components’ specification. The first contribution is part of a reverse engineering
approach meant at extracting structural and behavioral descriptions from Java component
code, with the aim of ensuring the required traceability among component specifications and
implementations. The second contribution aims at setting the bases of a framework allowing
a full contractual specification of software components and enabling component interoper-
ability verifications. At the basis of such a framework we have proposed ContractCML, a
hierarchical DSML focused on representing components’ semantic contracts. Based on it,
we have further proposed a simulation method for ContractCML component services within
the XMF execution framework.

All proposals made have been appropriately motivated and compared to related work in
the literature, so as to emphasize their relevance to the field.
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CIM Computation Independent Model
CMOF Complete MOF
DBC Design by Contract
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EMF Eclipse Modeling Framework
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PSM Platform Specific Model
UML Unified Modeling Language
WFR(s) Well Formedness Rule(s)
XMF EXecutable Metamodeling Facility

44


	Acknowledgements
	1 Introduction
	2 Background
	2.1 Formal Methods and Languages
	2.1.1 Overview
	2.1.2 The B Method
	2.1.3 Design by Contract
	2.1.4 Object Constraint Language

	2.2 Software Reuse and Reusable Assets
	2.2.1 Overview
	2.2.2 Object-Oriented Design Patterns
	2.2.3 Component-Based Software Development
	2.2.4 Model-Driven Engineering


	3 Formalization of Design Patterns
	3.1 Motivation and Related Work
	3.2 An Approach to Formalizing the State Pattern in B
	3.2.1 The State Design Pattern
	3.2.2 State Pattern Definition in B
	3.2.3 State Pattern Reuse in B
	3.2.4 Validation. Proof Activity Analysis

	3.3 Summary

	4 Constraint Patterns in Object-Oriented Modeling
	4.1 Motivation
	4.2 Related Work
	4.3 A New Approach: MDE-Driven OCL Specification Patterns
	4.3.1 Approached Patterns. Existing Solutions
	4.3.2 Proposed Solutions
	4.3.2.1 The For All Constraint Pattern
	4.3.2.2 The Unique Identifier Constraint Pattern - Invariant Solutions
	4.3.2.3 The Unique Identifier Constraint Pattern - Pre/Post-condition Solutions

	4.3.3 Tool Support and Validation
	4.3.3.1 Model Compilability Checks
	4.3.3.2 Model Testing


	4.4 Summary

	5 The Static Semantics of (Meta)Modeling Languages
	5.1 Motivation
	5.1.1 The Model Compilability Problem
	5.1.2 Diagnosing the State of Facts Regarding Model Compilability

	5.2 Towards a Conceptual Framework Supporting Model Compilability - Principles of a Static Semantics Specification
	5.3 Enhancements to the Static Semantics of   (Meta)Modeling Languages
	5.3.1 Enhancements to the Static Semantics of UML/MOF
	5.3.1.1 State of Facts. Related Work
	5.3.1.2 Proposed Enhancements

	5.3.2 Enhancements to the Static Semantics of Ecore
	5.3.2.1 State of Facts
	5.3.2.2 Proposed Enhancements
	5.3.2.3 Related Work

	5.3.3 Enhancements to the Static Semantics of XCore
	5.3.3.1 State of Facts
	5.3.3.2 Proposed Enhancements


	5.4 Summary

	6 The Specification of Software Components
	6.1 Towards Reverse Engineering Component Specifications from Code
	6.1.1 Motivation and Related Work
	6.1.2 General Approach
	6.1.3 The Common Component MetaModel (CCMM)
	6.1.4 Tool Support and Validation

	6.2 ContractCML - A Contract-Aware Component Modeling Language
	6.2.1 Motivation and Related Work
	6.2.2 The ContractCML Metamodel
	6.2.2.1 Metamodel Overview
	6.2.2.2 Basic Contracts. Syntactic Specification of Interfaces
	6.2.2.3 Behavioral Contracts. Semantic Specification of Interfaces
	6.2.2.4 A Model Weaving Approach to Representing Information Models

	6.2.3 ContractCML Modeling Example
	6.2.4 Component Models' Simulation Using ContractCML
	6.2.4.1 Proposed Simulation Method
	6.2.4.2 Validation


	6.3 Summary

	7 Conclusions
	Bibliography
	Abbreviations

